Radon Vision 7

Handbuch

SARAD GmbH*

9. Dezember 2020

*info@sarad.de

Inhaltsverzeichnis

1.	Einf	ührung	6
	1.1.	Funktionen	6
	1.2.	Systemvoraussetzungen	8
2.	Inst	allation und Konfiguration	9
	2.1.	Installation	9
	2.2.	Einrichtungsassistent	10
3.	Das	Wichtigste in Kürze	12
	3.1.	Begriffe: Messkampagnen und Messwertdatei	12
	3.2.	Datenhaltung und Qualitätssicherung	12
	3.3.	Bewährte Vorgehensweise	15
	3.4.	Berechnung von Mittelwerten, Exposition und Dosis	16
		3.4.1. Markieren von Integrationsintervallen zur Berechnung von Mittelwer-	
		ten, Exposition und Dosis	16
		3.4.2. Einstellung von Gleichgewichtsfaktor und Dosiskonversionskoeffizient	18
4.	Anv	vendungsbeispiele	19
	4.1.	Beispiel: Bewertung der Radonsituation in Wohnräumen	19
	4.2.	Beispiel: Ermittlung der Radonbelastung in einem Schulgebäude	20
	4.3.	Beispiel: Ortsdosimetrie in einem Wasserwerk	21
5.	Bed	ienung von Radon Vision 7	24
	5.1.	Übersicht	24
	5.2.	Anschließen des Messinstruments	27
	5.3.	Gerätekonfiguration	27
		5.3.1. Geräte der <i>Radon-Scout</i> -Familie, <i>Thoron Scout</i> und <i>RTM 1688-2</i>	27
		5.3.2. Geräte der DOSEman-Familie, RTM 1688 und Analogsensor	30
	5.4.	Darstellen und Analysieren der Messdaten	34
		5.4.1. Auslesen der Messdaten	34
		5.4.2. Zoomen und Verschieben	34
		5.4.3. Kampagnen auswählen	35
		5.4.4. Markieren von Integrationsintervallen	36
		5.4.5. Spektrumsanzeige	36
		5.4.6. Diagrammansicht verändern	38
		5.4.7. Druck und Export	39
	5.5.	Berechnung von Exposition, Dosis und Mittelwerten	44
		5.5.1. Anzeige der berechneten Werte	44

		5.5.2.	Nachweisgrenze und Expositionsberechnung	44			
		5.5.3.	Dosisberechnung	45			
		5.5.4.	Filtern mit iCalendar-Dateien	46			
	5.6.	Bericht	e	46			
A.	Liste	e der Ta	stenkombinationen	51			
В.	Beka	annte E	inschränkungen und Fehler	52			
Gl	Glossar 54						

Tabellenverzeichnis

Zoomen und Verschieben im Diagramm	35
Kampagnen im Diagramm und über die Dropdown-Liste auswählen	35
Integrationsintervalle im Diagramm manuell markieren	36
In Berichtsvorlagen verwendbare Variablen mit ihrer Bedeutung	48
	Zoomen und Verschieben im DiagrammKampagnen im Diagramm und über die Dropdown-Liste auswählenIntegrationsintervalle im Diagramm manuell markierenIn Berichtsvorlagen verwendbare Variablen mit ihrer Bedeutung

Abbildungsverzeichnis

2.1.	Eingabe des Zielordners	9
2.2.	Auswahl von zu installierenden Softwarekomponenten	10
2.3.	Auswahl der Speicherorte für Nutzerdaten und Konfiguration	11
2.4.	Einstellung von Pfaden, Sprache und Einheitensystem	11
3.1.	chart	13
3.2.	Auforderung zum Speichern als Binärdatei nach dem Klick auf Bericht/Export	14
3.3.	clock	16
3.4.	kampagne5	17
3.5.	berechnung	18
5.1.	Bedienelemente Chart	25
5.2.	berechnung	26
5.3.	Gerätespezifischer Dialog für die Geräteeinstellungen der Instrumente der	
	Radon-Scout-Familie	28
5.4.	Dialog für die Geräteeinstellungen der Instrumente der DOSEman-Familie	30
5.5.	Dialog für die Einstellung der Koeffizienten zur Dosisberechung	32
5.6.	Zusätzliche Einstellmöglichkeiten für die Analogsensoren	33
5.7.	Spektrumsanzeige	37
5.8.	Angedockte Spektrumsanzeige und Glättung mit gleitendem Mittelwert über	
	zwei Perioden	37
5.15.	Diagramm mit Grenzwertlinie	42
5.18.	Bericht aus Standardvorlage	47

1. Einführung

1.1. Funktionen

Radon Vision 7 ist die Anwendungssoftware für die Radonmessgeräte der SARAD GmbH. Sie unterstützt alle Geräte der Gerätefamilien:

- Radon Scout:
 - Radon Scout 1 und 2,
 - Radon Scout PLUS,
 - Radon Scout Home (P, CO2),
 - Radon Scout Professional (P, CO2),
 - Thoron Scout,
 - Smart Radon Sensor,
- DOSEman:
 - DOSEman,
 - DOSEman PRO,

sowie die Geräte:

- RTM 1688,
- RTM 1688-2,
- Analog Radon Sensor,
- Analog Progeny Sensor,
- Indoor Air Sensor.

Die App erlaubt die folgenden Arbeiten:

- Einstellung des Messgerätes, Abholen der Messdaten vom Gerät:
 - für lokal am PC angeschlossene Messgeräte
 - für über Modems verbundene entfernte Messgeräte
- Datenverwaltung in Binärdateien:
 - automatisches Erzeugen der Verzeichnisstruktur

- automatische Vergabe von Dateinamen
- Zwang zum Speichern als Binärdatei vor der Berichtserstellung als Maßnahme zur Qualitätssicherung
- interaktive graphische Anzeige der Messdaten in einem Diagramm mit:
 - Auswahl der anzuzeigenden Messkampagne
 - Mehrfach-Zoom
 - Achsen-Zoom
 - Verschiebung der Anzeige entlang der Achsen
 - Daten-Cursor
 - Diagrammausdruck
 - Speicherung in verschiedenen Dateiformaten
 - Kopieren in die Zwischenablage
 - Diagrammbearbeitung
- Diagrammdarstellung des Alpha-Spektrums (nur bei Geräten mit Spektrumsmessung):
 - Spektrum einzelner Messintervalle
 - Spektrum über markierte Zeitabschnitte
- Auswahl von Messintervallen für die weitere Auswertung:
 - interaktiv mit der Maus oder
 - über den Import einer iCalender-Datei,
 - Einschränkung der Auswahl durch Definition eines Auswertefensters
- Berechnungen mit den ausgewählten Messintervallen:
 - Mittelwerte mit ihren statistischen Fehlern
 - Exposition
 - Dosisberechung mit einstellbarem Dosiskonversionskoeffizienten und Gleichgewichtsfaktor
- Umschaltung zwischen SI- und US-Einheiten
- Erzeugen eines Berichtes als Excel- oder LibreOffice-Datei:
 - frei konfigurierbare Vorlage-Datei für flexible Layouts
 - optionale Aufnahme aller Messdaten in zusätzliche Tabellenblätter

Optional aktivierbare Funktionen älterer Softwareversionen:

- selektiver Export einer Excel-kompatiblen Textdatei
- einfacher Protokolldruck mit Freiraum für eigenen Firmenbogen.

1.2. Systemvoraussetzungen

- Windows-Betriebssystem (getestet mit Windows 7, 8 und 10)
- ca. 50 MB freie Laufwerkskapazität
- Grafik-Mindestanforderungen: 1024×768 Pixel, 256 Farben
- Maus oder anderes Zeigegerät
- RS-232-Schnittstelle (COM), USB oder Modem zum Auslesen der Messdaten

Für die gezielte zeitliche Auswahl von Messdaten werden Dateien im iCalendar-Format (Dateierweiterung ICS) benötigt, die mit gängigen Kalender-Apps wie *Kalender, Outlook*, mit der *Thunderbird*-Erweiterung *Lightning, Google-Calendar* o.ä. erstellt werden können. Eine dieser Apps sollte zusätzlich zu *Radon Vision 7* installiert sein.

2. Installation und Konfiguration

2.1. Installation

Legen Sie die Installations-CD in das Laufwerk ein oder laden Sie von der SARAD-Website die Installationsdatei herunter und starten Sie setup-radon_vision-7.exe. Das Installationsprogramm leitet Sie durch den Installationsprozess.

Als Zielordner wird, wie in Abbildung 2.1 gezeigt, standardmäßig das Programmverzeichnis von Windows vorgeschlagen. Dies können Sie nach Bedarf ändern. *Radon Vision 7* lässt sich auch portabel auf einem USB-Stick oder Netzlaufwerk installieren (vgl. Abschnitt 2.2). Sie können *Radon Vision 7* problemlos parallel zu einer früheren Version von *Radon Vision* installieren, sollten dann aber auf jeden Fall ein Installationsverzeichnis wählen, das von dem der früheren Version verschieden ist.

Abbildung 2.1.: Eingabe des Zielordners für die Installation

In der in Abbildung 2.2 ist die Eingabemaske für die Auswahl der zu installierenden Softwarekomponenten zu sehen. In der Regel genügt die kompakte Installation, bei der nur die Grundsoftware *Radon Vision 7* installiert wird. Die zur Datenübertragung vom Messgerät via USB notwendigen FTDI-Treiber werden normalerweise von Windows automatisch installiert, sobald ein SARAD-Instrument über USB mit dem PC verbunden wird – vorausgesetzt es besteht eine Internetverbindung.

💦 Setup - RadonVision Version 7.0		-		×
Komponenten auswählen Welche Komponenten sollen installiert werden?				
Wählen Sie die Komponenten aus, die Sie installieren wenn Sie bereit sind fortzufahren.	möchten. Klicke	n Sie auf	"Weiter",	
Benutzerdefinierte Installation			~	
FTDI Drivers			2,4 MB	
Radon Vision 7			33,2 MB	
Die aktuelle Auswahl erfordert min. 35,7 MB Speiche	rplatz.			
< <u>Z</u> urü	ck <u>W</u> eiter	>	Abbrech	hen

Abbildung 2.2.: Auswahl von zu installierenden Softwarekomponenten

2.2. Einrichtungsassistent

Beim ersten Start von *Radon Vision 7* wird ein Einrichtungssassistent gestartet, mit dem grundsätzliche Einstellungen zum Verhalten der Software vorgenommen werden.

Als Erstes ist auszuwählen, wo *Radon Vision 7* Nutzerdaten speichern und Konfigurationseinstellungen ablegen soll (Abbildung 2.3).

Hier gibt es drei Optionen:

- **Standard** *Radon Vision 7* speichert Nutzerdaten im Windows-Ordner für Anwendungsdaten (%appdata%), die Konfiguration in der Windows-Registry.
- **Portabel** Nutzerdaten gehen in Unterverzeichnisse des Programmverzeichnisses, die Konfiguration in eine ini-Datei.
- **Benutzerdefiniert** Hier können erfahrene Benutzer oder Administratoren auch exotischere Speicherorte festlegen.

Wenn Sie sich unsicher sind, wählen Sie die erste Option!

Im nächsten Fenster (Abbildung 2.4) können Sie, ausgehend von der zuvor getroffenen Auswahl, die Verzeichnispfade genauer festlegen, die Sprache der Benutzeroberfläche und das zu verwendende Einheitensystem festlegen.

Ferner kann eingestellt werden, ob *Radon Vision 7* bei der Suche nach angeschlossenen Messgeräten nur direkt am Computer angeschlossene oder auch über Modem verbundene Geräte berücksichtigen soll.

Abbildung 2.3.: Auswahl der Speicherorte für Nutzerdaten und Konfiguration

🚼 Setup-Assistent	—		×
Für den normalen Betrieb nötige Informationen			36
Verzeichnispfad für Messwertdateien:			
C: \Users\mstrey.SARAD\AppData\Roaming\SARAD\Data		<u></u>	
Verzeichnispfad für ladbare Konfigurationsdateien (Filter, Modem-Konfigurationen):			
C: \Users\mstrey.SARAD\AppData\Roaming\SARAD\Conf		<u></u>	
Wählen Sie Ihre Sprache: Deutsch (Deutschland) ~ Einheitensystem ③ SI 〇 USCS			
Suchen nach O lokalen und entfernten Geräten nur lokal angeschlossene Geräte		Absch	nließen

Abbildung 2.4.: Einstellung von Pfaden, Sprache und Einheitensystem

3. Das Wichtigste in Kürze

3.1. Begriffe: Messkampagnen und Messwertdatei

- **Messkampagne** Ein Satz zeitlich zusammenhängender Messdaten vom selben Messgerät, die sich zusammen in einer Messwertdatei befinden. Eine Messkampagne beginnt mit dem Start der Messung am Instrument und endet mit dem Stop der Messung oder mit dem Herunterladen der Messdaten vom Instrument. Vom Instrument heruntergeladene Messdaten bestehen aus mindestens einer Messkampagne.
- **Messwertdatei** Vom Instrument heruntergeladene Messdaten können mit *Radon Vision 7* als Datei auf dem PC gespeichert werden. Dabei werden die Rohdaten (Counts) einer oder mehrerer Messkampagnen so in einer Binärdatei gespeichert, wie sie vom Instrument kommen. Diese binäre Datei im proprietären RVX-Format der Firma SARAD wird an einem im Einrichtungsassistenten (Abbildung 2.4) festgelegten zentralen Ort mit systematischen Dateinamen gespeichert. Messwertdateien können beim Abspeichern mit einem Kommentar versehen werden.

Radon Vision 7 stellt die Messkampagnen einer Messwertdatei einzeln oder zusammen in Diagrammen dar, gestattet aber, die in einer Messwertdatei zusammengefassten Messkampagnen mit Hilfe der Filterfunktionen gemeinsam auszuwerten. Damit besteht die Möglichkeit, an einem Messort aufgenommene Daten zusammen auszuwerten, obwohl die Messung z. B. durch einen Batteriewechsel unterbrochen wurde.

Abbildung 3.1 zeigt die Diagrammansicht einer Messwertdatei mit fünf, in diesem Fall unzusammenhängenden, Messkampagnen in *Radon Vision 7*.

3.2. Datenhaltung und Qualitätssicherung

Als Binärdateien mit proprietärem, von der SARAD GmbH nicht offengelegtem Dateiformat sind die RVX-Dateien mit den Rohdaten der Messung relativ manipulationssicher. So können sie auch nachträglich als Beweismittel dafür verwendet werden, dass ein mit *Radon Vision 7* erstellter Bericht nicht manipuliert oder gänzlich frei erfunden wurde.

In *Radon Vision 7* gilt daher das Prinzip: "Kein Bericht ohne binäre Rohdaten im RVX-Format." Das Programm fordert Sie deshalb dazu auf, die vom Messinstrument heruntergeladenen Messwerte zu speichern, sobald Sie einen Bericht erzeugen wollen (Abbildung 3.2).

Der Name der Binärdatei steht in jedem von *Radon Vision 7* erzeugten Bericht, sodass der Bericht jederzeit auf seine Quelle zurück verfolgt werden kann.

Dateiname der Binärdatei

Unterbrechung zwischen Kampagne 4 und 5

Abbildung 3.1.: Messwertdatei mit fünf Messkampagnen

(TSC520200115T120820	0121T1049.rxx] – 🗆 🗙
Datei Gerät Diagramm Ansi	Hilfe
Radon-Scout Pro, SN:597, SW:10	✓ 🔍 Suchen 🕺 Einstellung 🏟 Daten holen 🖄 Speichern als 🖺 Datei öffnen 🛛 🗐 Spektrum
Diagramm 🔳 Berechnung	
Überschrift / Projekt	Wasserwerk Dresden
Exponierte Person oder Gru	Servicepersonal
Auswertefenster	Anfang Ende 2020-01-15 🖉 12:03:00 🔄 2020-01-21 🖉 10:49:00 🔄
Filter	iCal-Datei importieren
Messort	Filterbecken 1
Gerät	Radon Vision X
Kommentar	Wir erlauben Ihnen nicht, Berichte zu erstellen, ohne dass Sie zuvor Ihre Messdaten in eine Binärdatei gespeichert haben. Bitte sichern Sie jetzt Ihre Messdaten!
Verantwortlich für die Messu	ОК
Dosis Radon-222	Gleichgewichtsfaktor Dosis-Umrechnungskoeftizient 0,4 7,8 nSv m³ (Bq h) ⁻¹
Anfang	de Expositionsdauer Datensätze Radon-Mittelwert Radonexposition Radondosis
8	in h in Bq/m³ in Bqh/m³ in µSv
2020-01-20T13:57:00	20-01-21T10:49:00 18,0 18 4.253 76.548 238,8
อี้อี่ <u>Gesamt</u>	<u>18.0 18 4.253 76.548 238.8</u>
C:\Program Files (x86)\RadonVi	n\Templates\tmp-report.xlsx* Bericht/Export Bericht/Export

Abbildung 3.2.: Auforderung zum Speichern als Binärdatei nach dem Klick auf Bericht/Export

3.3. Bewährte Vorgehensweise

Folgende Aspekte sind bei der Planung der Messung zu beachten:

- 1. Das Herunterladen vieler Messdatensätze vom Messinstrument dauert relativ lange.
- 2. Es werden stets alle auf dem Instrument gespeicherten Messdaten heruntergeladen und dann in der selben Messwertdatei gespeichert.
- 3. Daten verschiedener Messwertdateien können in *Radon Vision 7* zusammen ausgewertet werden. Die Aufteilung einer Messwertdatei ist dagegen nicht möglich.
- 4. Die Auswertung in *Radon Vision 7* ist leichter, wenn sich alle zusammengehörigen Daten nicht nur in der selben Messwertdatei, sondern auch in der selben Messkampagne befinden.

Als Nutzer möchten Sie in aller Regel Daten vom gleichen Messort zusammen auswerten und andererseits die Übersicht über Ihre Daten behalten. Daraus ergeben sich die folgenden Tipps:

- 1. Planen Sie die Länge der Messkampagne entsprechend ihrem Messziel.
- 2. Unterbrechen Sie eine laufende Messung nicht unnötig.
- 3. Löschen Sie die Daten vom Instrument, nachdem sie diese mit *Radon Vision 7* heruntergeladen und in einer RVX-Datei gespeichert haben, es sei denn, Sie laden die Daten einer laufenden Messung für eine Zwischenauswertung herunter, ohne die Messung zu stoppen. Beispiel: Im Erdgeschoss einer Wohnung soll sechs Monate lang gemessen werden, um einen Jahresmittelwert der Radonbelastung zu finden. Sie sind neugierig und wollen schon nach einem Monat eine erste Übersicht. In diesem Fall lassen Sie die Messung laufen, laden die Daten herunter und belassen sie auf dem Instrument. Am Ende des sechsmonatigen Zeitraums wird die Messkampagne durch den Stopp der Messung abgeschlossen, die vollständigen Daten vom Instrument heruntergeladen, auf dem PC als RVX-Datei gespeichert und vom Instrument gelöscht. Die RVX-Dateien der Zwischenauswertung löschen Sie der guten Ordnung halber.
- 4. Vergeben Sie aussagekräftige Kommentare beim Abspeichern.
- Wenn Sie den Messort wechseln, stoppen Sie die Messung und starten Sie diese am neuen Ort neu, um zu vermeiden, dass Messdaten von verschiedenen Messorten in die gleiche Messkampagne geraten.
- 6. Prüfen Sie **unbedingt** nach jedem Batteriewechsel die Uhr des Messinstruments und stellen sie diese ggf. (vgl. Abbildung 3.3)!

Abbildung 3.3.: Synchronisation der Uhr des Messinstruments mit der PC-Zeit

3.4. Berechnung von Mittelwerten, Exposition und Dosis

3.4.1. Markieren von Integrationsintervallen zur Berechnung von Mittelwerten, Exposition und Dosis

Manuell mit der Maus

(1) gedrückt halten und Maus über das Diagramm bewegen zum Markieren von Integrationsintervallen.

ACHTUNG: Die Integrationsintervalle werden im Diagramm nur dann angezeigt, wenn *Integration Range* in der Legende markiert ist.

Ctrl gedrückt halten und Maus über die markierten Intervalle ziehen, um die Markierung rückgängig zu machen.

Beim Markieren werden automatisch die im *Berechnung*-Tab in der Ergebnistabelle dargestellten Mittelwerte, Expositionen und Dosiswerte aktualisiert.

Abbildung 3.4 zeigt Kampagne 5 aus der in Abbildung 3.1 gezeigten Messwertdatei. Hier sind alle Messwerte für die Berechnung von Exposition und Dosis markiert. Abbildung 3.5 zeigt das entsprechende Ergebnis.

Regelbasiert durch den Import einer iCalendar-Datei

Mit einer gängigen Kalender-Applikation wie *Microsoft Outlook*, dem *Google Calendar* oder dem Add-on *Lightning* für *Mozilla Thunderbird* kann ein Kalender erstellt werden, der dann – als ics-Datei exportiert – im *Berechnung*-Tab von *Radon Vision 7* importiert werden kann. Die entsprechenden Intervalle erscheinen sofort im Diagramm und die Werte in der Ergebnistabelle (Abbildung 3.5) werden automatisch aktualisiert.

ICalendar-Dateien können auch oft von Zeiterfassungssystemen oder aus zur Schichtplanung verwendeter Software exportiert werden. So ist es möglich, die Exposition bestimmter Personengruppen gezielt zu berechnen.

hier klicken zur Anzeige der Berechnungsergebnisse wichtig zur Anzeige

Abbildung 3.4.: Kampagne 5 mit aktivem Integrationsbereich

3.4.2. Einstellung von Gleichgewichtsfaktor und Dosiskonversionskoeffizient

Mit *Radon Vision 7* können Sie die Ortsdosis am Aufstellungsort des Messinstruments berechnen. Im *Berechnung-*Tab können Sie den für diese Berechnung notwendigen Gleichgewichtsfaktor und den Dosiskonversionskoeffizienten einstellen. Bei den als Personendosismeter konzipierten Geräten der *DOSEman-*Familie sind diese Faktoren bereits Teil der Gerätekonfiguration. Bei diesen Geräten werden diese Faktoren deshalb beim Auslesen der Messdaten vom Messinstrument heruntergeladen und automatisch im *Berechnung-*Tab in die entsprechenden Felder eingetragen. Für alle anderen Geräte sind die Felder mit den üblichen Standardwerten belegt.

[130320200115112	0820200121T1	049.rvx]		/			- 0	
ei Gerät Diagramm	Ansicht Hilfe				1.00	-		
don-Scout Pro, SN:597,	SW:10	∼ 🤍 Suchen	🚿 Einstellung	D/ten holer	n 🖄 Speichern <u>a</u> l	s 🛅 Datei <u>ö</u> ffnen	n 📔 Spektri	JM
Diagramm 31 Berec	.hnung			_/				
Uberschrift / Projekt		Wasserwerk Dres	:den					
Exponierte Person od	er Gruppe	Servicepersonal	/	/				
Auswertefenster		Anfang			Ende			
		2020-01-15		:00	2020-01-21		:00	
Filter		iCal-Datei import	ieren]▼ ☐iCal akt	vie
Messort		Filterbecken 1						
Gerät		Thoron-Scout SN:	5					
- Kerning rudt		Incove Daten zur	Demonstration Vol	r Kauon VISION 7				
Verantwortlich für die	Messung	Karsten Musterm	ann					_
Dosis Radon-222		Gleichgewichtsfak	tor Dosis-Umre	chnungskoeffizier 7,8 nSv m³ (Bq	nt h)''			
Anfang	Ende		Expositionsdauer	Datensätze	Radon-Mittelwert	Radonexposition	Radondosis	_
			in h		in Bq/m³	in Bqh/m³	in µSv	
	2020-01-2	21T10:49:00	18,0	18	4.253	76.548	238,8	
2020-01-20113:57:0			<u>18,0</u>	<u>18</u>	<u>4.253</u>	<u>76.548</u>	238,8	
<u>Gesamt</u>	/							

iCal-Datei hier importierbar

Ergebnistabelle

Abbildung 3.5.: Berechnung-Tab mit den Berechnungsergebnissen

4. Anwendungsbeispiele

4.1. Beispiel: Bewertung der Radonsituation in Wohnräumen

Szenario Der Vermieter eines Wohnhauses möchte wissen, ob der gesetzliche Referenzwert von 300 Bq m^{-3} als Jahresmittelwert in seinem Mietobjekt eingehalten wird.

Der mit der Untersuchung beauftragte Baubiologe stellt zum Beginn der Heizsaison je einen *Radon Scout Home* in zwei Räumen im Erdgeschoss auf, die seiner Erfahrung nach besonders exponiert sein könnten. Die Bewohner bittet er, hin und wieder einen Blick auf die Geräte zu werfen, aber deren Standorte nicht zu verändern und die Messung nicht zu unterbrechen. Vor dem Start der Messkampagne hat er – noch in seinem Büro – frische Batterien eingelegt und die beiden Instrumente über das mitgelieferte USB-Kabel mit seinem PC verbunden, *Radon Vision* 7 gestartet und über den Gerät Einstellung-Dialog (Ctrl + E) die Uhrzeit [™] gesetzt und alte Messdaten gelöscht [™].

Nach drei Wochen schaut er noch einmal zu einer ersten Zwischenauswertung vorbei und liest die Messdaten mit seinem Laptop aus, ohne die Messung zu unterbrechen. Dazu verbindet er das Instrument mit dem mitgelieferten USB-Kabel mit seinem Laptop, startet *Radon Vision 7* und drückt Ctrl+G zum Herunterladen der Messdaten. Im angezeigten Diagramm markiert er mit \widehat{T} + Doppelklick den gesamten Messzeitraum. Im *Berechnung*-Tab liest er den Radon-Mittelwert ab.

Bereits jetzt kann der Baubiologe anhand des Mittelwertes und des Kurvenverlaufes erkennen, ob (a) kein oder (b) ein massives Radonproblem vorliegt oder ob sich (c) die Radonkonzentration im Grenzbereich des gesetzlichen Referenzwertes bewegt. Während er in Fall a die Untersuchung evtl. abbrechen und in Fall b bereits damit beginnen kann, nach den Eintrittspfaden zu forschen, wird der Baubiologe in Fall c die Messung über einen längeren Zeitraum von sechs Monaten oder gar einem Jahr weiter laufen lassen. Bei allen weiteren Zwischenauswertungen kann er so verfahren wie bei der ersten und die Messkampagne weiter laufen lassen.

Läuft die Messung über mehrere Monate, wird ein Batteriewechsel notwendig werden, bei dem in der Regel die Messkampagne beendet und eine neue Messkampagne gestartet wird. In *Radon Vision 7* wird die Unterbrechung zwischen zwei Messkampagnen als schraffierter Bereich über die ganze Höhe des Diagramms dargestellt, der in diesem Beispiel in der Gesamtansicht über einen so langen Zeitraum zu einer dunkelgrau gestrichelten Linie entartet. Um die Messwerte beider Kampagnen in die Mittelwertbildung einfließen zu lassen, muss der Baubiologe nacheinander beide Kampagnen, links und rechts der Unterbrechung, mit î + Doppelklick markieren. Um ihn zu warnen, dass jetzt über zwei Messkampagnen integriert bzw. gemittelt wird, die im allgemeinen Fall nichts miteinander zu tun haben, zeigt *Radon Vision 7* ein orangefarbenes Warnzeichen ④ neben der *Bericht/Export*-Schaltfläche an. Da im Beispiel beide Messkampagnen zusammen gehören, kann diese Warnung ignoriert werden. Spätestens zum Abschluss seiner Untersuchung wird unser Baubiologe die Messwerte mit Datei Speichern als... (Ctrl+ A) auf seinem PC speichern. Danach kann er mit der *Bericht/Export*-Schaltfläche einen Bericht im Excel-Format erzeugen, der bei Markierung des daneben liegenden Kästchens mit den vollständigen Messdaten ergänzt wird.

Noch ist der Baubiologe mit dem so erzeugten Bericht nicht zufrieden. Der Bericht trägt oben rechts das SARAD-Logo. Dort hätte er gern sein eigenes Firmenlogo. Auch sollen die Texte vor den Einträgen in deutscher Sprache erscheinen und nicht auf Englisch. Um das zu erreichen, bearbeitet der Baubiologe die Excel-Vorlage unter <Programmverzeichnis>> Templates > tmp-report.xlsx und speichert sie unter einem neuen Namen in einem selbst gewählten Verzeichnis. Mit dieser neuen Vorlage kann er künftige Berichte leicht in deutscher Sprache und mit seinem Logo erzeugen. Im gleichen Verzeichnis findet er auch die Datei tmpreport_advanced_example.xlsx, aus der er lernt, wie man mit einem kleinen Trick mit den Ergebnissen auch weiterrechnen und wie man einen Vergleich mit gesetzlichen Grenzwerten im Bericht mit unterbringen kann. *Radon Vision 7* merkt sich die zuletzt benutzte Vorlage mit ihrem Verzeichnis und bietet sie beim nächsten Export automatisch als Standardvorlage an.

4.2. Beispiel: Ermittlung der Radonbelastung in einem Schulgebäude

Szenario An einer Schule in einem Ort mit bekanntermaßen hoher Bodenradonkonzentration soll die tatsächliche Belastung der Schüler und Lehrkräfte ermittelt werden. Weil das Radonproblem aufgrund der bergbaulichen Geschichte des Ortes bekannt ist und die Verantwortlichen wissen, dass die Radonkonzentration in den Nachtstunden normalerweise ansteigt, hat der Hausmeister der Schule schon seit längerer Zeit die Aufgabe, jeden Morgen alle Fenster zu öffnen, um gründlich zu lüften. Nachts, an den Wochenenden und Wochentags nach 16 Uhr steht das Schulgebäude leer. Nur die Turnhalle wird Montags, Mittwochs und Freitags jeweils bis 21 Uhr genutzt.

Das mit der Untersuchung beauftragte Ingenieurbüro stellt insgesamt fünf *Radon Scout Professional* auf: zwei im Erdgeschoss der Schule, einen im für den Werkunterricht genutzten Kellerraum, einen im ersten Obergeschoss und einen in der Turnhalle. Die Messung findet in der Heizperiode statt, so dass schon nach drei Monaten, in denen die Messanordnung in Ruhe gelassen wird, die Auswertung erfolgen kann.

Die Auswertung erfolgt für jedes der fünf Geräte einzeln. Ergebnis der Auswertung soll dabei ein mit dem gesetzlichen Referenzwert von 300 Bq m^{-3} vergleichbarer Mittelwert sein, bei dem aber die Zeiten, in denen der betreffende Raum nicht benutzt wird, ausgeblendet sind.

Radon Vision 7 verwendet zur Datenfilterung Kalender im standardisierten iCalendar-Datenformat. Das sind Dateien mit der Dateinamenserweiterung ".ics", die aus praktisch allen gängigen Kalender-Apps, wie *Microsoft Outlook, Google Kalender* oder das Kalender-AddOn *Lightning* des E-Mail-Clients *Thunderbird*, exportiert werden können. Daneben können iCalendar-Dateien auch oft aus Softwareanwendungen zur Schichtplanung und aus Zeiterfassungssystemen exportiert werden.

Der mit der Auswertung beauftragte Mitarbeiter nutzt Lightning und erstellt damit je einen

Kalender für das Schulhaus im Allgemeinen, die Turnhalle und den Werkraum im Keller. Er nutzt dabei die Möglichkeit seines Kalenders, Termine regelbasiert zu wiederholen. Für das Schulhaus geht er auf den letzten Montag vor Beginn seiner Messkampagne, trägt einen Termin von 7 bis 16 Uhr ein und legt als Wiederholungsregel "Wochentags" fest. Eine Festlegung des Enddatums ist nicht nötig, schadet aber auch nicht. Für die Herbstferien, die in die Messkampagne gefallen sind, muss er noch eine Ausnahme festlegen. Er markiert dazu alle Termine in der Ferienwoche und löscht diese. Den Kalender exportiert er als cal-schulhaus.ics. Analog verfährt er mit dem Kalender für die Turnhalle, wobei er hier Montags, Mittwochs und Freitags jeweils den Zeitraum von 16 bis 21 Uhr hinzunimmt. Dafür benutzt er eine benutzerdefinierte Terminwiederholung.

Beim Erstellen des Kalenders für den Werkraum muss der Auswerter den Stundenplan zu Rate ziehen. Er hat Glück: Im Schulsekretariat wird der Stunden- und Vertretungsplan, in dem auch die Nutzung der Klassenzimmer tagesaktuell geführt wird, mit einer Schichtplanungssoftware gepflegt, die die tatsächlichen Nutzungszeiten des Werkraumes direkt als iCalendar-Datei, cal-werkraum.ics, ausgeben kann.

Bei der Auswertung werden die Messwertdateien der fünf Messinstrumente mit den drei iCal-Dateien kombiniert, sodass schließlich fünf Berichte entstehen, in denen in der Summenzeile der effektive Radonmittelwert für den betreffenden Bereich steht:

- Keller mit cal-werkraum.ics,
- Erdgeschoss 1 und 2 sowie Obergeschoss, jeweils mit cal-schulhaus.ics,
- Turnhalle mit cal-turnhalle.ics.

4.3. Beispiel: Ortsdosimetrie in einem Wasserwerk

Szenario In einem Wasserwerk gibt es Bereiche mit erhöhter Radonkonzentration. Der Betreiber des Werkes ist verpflichtet, sowohl für seine eigenen Mitarbeiter als auch für Mitarbeiter externer Firmen, die sich zeitweise in diesen Bereichen aufhalten, die Strahlenbelastung als Dosis nachzuweisen. Dabei sollen Exposition und Dosis monatsweise ausgewiesen werden.

Die Radonbelastung ist nicht so hoch, dass der Aufwand, jeden Mitarbeiter mit einem Personendosimeter auszustatten, gerechtfertigt erscheint. Stattdessen hat sich die Arbeitschutzverantwortliche dafür entschieden, in dem Raum mit der Belüftungskaskade, wo die Radonbelastung am höchsten ist, einen *Radon Scout Professional* aufzustellen und die Messwerte dieses einen Gerätes als Referenz für alle Betriebsräume zu nehmen, in denen Brunnenwasser offen fließt oder steht.

Das Messinstrument wird mindestens einmal pro Monat ausgelesen. Dabei werden die Daten vom Gerät gelöscht, um den nächsten Auslesevorgang nicht unnötig zu verlängern. *Radon Vision* 7 gestattet es, mehrere Messwertdateien des selben Messinstruments auf einmal zu öffnen und diese zusammen auszuwerten.

Um die Zeiten zu erfassen, in denen sich die Mitarbeiter in den exponierten Bereichen befinden, wird ein elektronisches Zeiterfassungssystem benutzt. Jeder Mitarbeiter hält beim Betreten oder Verlassen eines Betriebsraumes seinen Betriebs- oder Besucherausweis an das Lesegerät am Eingang. Die Software des Zeiterfassungssystems gestattet es, für jeden Mitarbeiter eine iCalendar-Datei zu erzeugen, die, in Form von Terminen, alle Zeiträume enthält, in denen der betreffende Mitarbeiter in einem der exponierten Bereiche tätig war.

Exkurs

Ein Beispiel für eine reine Smartphone-App zur Zeiterfassung mit iCalendar-Export ist *timeEdition*.

Soll die Zeiterfassung über Terminals mit Ausweisleser erfolgen, dann ist das z. B. mit der Software *AFS-Zeiterfassung* möglich, die verschiedene Möglichkeiten (Terminal, Smartphone-App, PC) zur Erfassung der Zeiten bietet.

Kann man sich darauf verlassen, dass die Aufenthaltszeiten genau einem Dienst- oder Schichtplan entsprechen, so kann auch eine Software zur Schicht- und Dienstplanung, wie etwa die Online-App *ShiftJuggler*, eingesetzt werden, die den iCalendar-Export der Dienstpläne unterstützt.

Beim Ablegen der Messwertdateien schlägt *Radon Vision 7* automatisch sinnvolle Verzeichnisse und Dateinamen vor. Standardmäßig landet die RVX-Datei im Verzeichnispad %appdata% > SARAD > DATA > Year-JJJJ > DevNo-nnnn und entspricht dem Namensschema <Typ><Seriennummer>--<Startzeit>--<Endzeit>.rvx. Start- und Endzeit sind dabei, wie überall in *Radon Vision 7*, entsprechend ISO 8601 angegeben, also in der Form JJJJMMTT *T* hhmm, sodass die Dateien im Verzeichnis automatisch richtig sortiert sind.

In unserem Beispiel landen alle Messwertdateien im selben Verzeichnis. Am Anfang jeden Monats steht die Arbeitsschutzverantwortliche nun vor der Aufgabe, aus den abgeholten Messdaten und der für jeden Mitarbeiter vorliegenden iCalendar-Datei den Monatsbericht mit der Strahlendosis des Vormonats für den betreffenden Mitarbeiter zu erstellen. Dazu geht sie in *Radon Vision* 7 mit Ctrl+ \bigcirc in den Datei-Öffnen-Dialog und markiert dort einfach alle Dateien zum Öffnen. Anschließend wechselt sie in den *Berechnung*-Tab (Abbildung 3.5) und trägt dort die Überschrift für den Bericht und den Messort ein. Weil der Bericht die Strahlenbelastung pro Monat ausweisen soll, trägt sie unter *Auswertefenster* beispielsweise für März 2020 die folgenden Daten ein:

Anfang 2020-03-01 00:00:00

Ende 2020-04-01 00:00:00

Jetzt muss sie nur noch für jeden Mitarbeiter jeweils den Namen des Mitarbeiters und seine iCalendar-Datei eintragen und mit einem Klick auf die *Bericht/Export*-Schaltfläche den Bericht erzeugen. Nur beim ersten Bericht dieser Serie wird sie mit dem in Abbildung 3.2 gezeigten Hinweis genötigt, die aus mehreren Messwertdateien zusammengefassten Messwerte in eine neue RVX-Datei zu speichern. Diese legt sie, der besseren Übersicht wegen, im gleichen Verzeichnis ab, in dem sie auch die Berichte speichert. Damit geraten die ursprünglichen Messwertdateien nicht mit den zusammengefassten durcheinander.

Hinweis

Grundsätzlich ist es kein Problem, wenn die zusammengefassten Messwertdateien mit den ursprünglichen Messwertdateien zusammen in einem Verzeichnis stehen. Werden mehrere Dateien zum Öffnen markiert, dann prüft *Radon Vision 7* automatisch, ob Messwertsätze doppelt vorkommen, und importiert jeden Messwertsatz nur einmal.

5. Bedienung von Radon Vision 7

5.1. Übersicht

Die Abbildungen 5.1 und 5.2 zeigen die beiden Hauptansichten von *Radon Vision 7* mit den folgenden Bedien- und Anzeigeelementen:

- 1. Dropdown-Liste der verbundenen Messinstrumente,
- 2. Suchen-Schaltfläche zur Suche nach neu angeschlossenen Instrumenten,
- 3. *Einstellung*-Schaltfläche zum Setzen der Geräteeinstellungen des ausgewählten Instruments,
- 4. Schaltfläche zum Herunterladen der Messdaten vom Instrument,
- 5. Schaltfläche zum Abspeichern der Messdaten in einer Binärdatei,
- 6. Schaltfläche zum Öffnen einer binären Messwertdatei,
- 7. Schaltfläche zum Anzeigen des Alpha-Spektrums,
- 8. aktiver Bereich innerhalb des Auswertefensters,
- 9. inaktiver Bereich außerhalb des Auswertefensters,
- 10. Legende mit Checkboxen zum Markieren der darzustellenden Parameter,
- 11. Andockbereich für das Alpha-Spektrum,
- 12. Diagrammlinie für Thoron mit eingeblendeten Fehlerbalken für die einfache Standardabweichung,
- 13. Dropdown-Liste für die Länge der Glättungsperiode,
- 14. Auswahl einer Kampagne eines Bereiches zwischen Start und Stop einer Messreihe,
- 15. Anzeige der Messwerte unter dem Zeigerstrich,
- 16. in der Binärdatei gespeicherter Kommentar,
- 17. Anfangs- und Endzeit der Messwertdatei,
- 18. Gesamtzahl aller Messwertsätze in der Messwertdatei,

- 19. Gerätetyp und Seriennummer des Messinstruments, mit dem die angezeigten Messwerte erfasst wurden¹,
- 20. unterer Diagrammbereich für die Messwerte der Strahlungssensorik,
- 21. Markierung der Integrationsbereiche, über die die Mittelwert- sowie die Expositions- und Dosisberechnung erfolgen,
- 22. oberer Diagrammbereich für Umgebungsparameter,

Abbildung 5.1.: Bedien- und Anzeigeelemente im Diagramm-Tab

- 23. Überschrift, unter der der Bericht stehen soll,
- 24. Person oder Personengruppe, die sich in der betrachteten Zeit am Messort aufgehalten hat,

¹Die angezeigten Messdaten stammen aus einer mit einem *RTM 1688-2* aufgenommenen Messwertdatei, haben also nichts mit dem in der Liste der verbundenen Geräte oben stehenden *Radon Scout Home* zu tun.

Note:	SARAD Radon Vision 7	7.0.5 [RTM34020	0200109T1545202	00324T1014	.rvx]					-	0 X	23
Rat	don-Scout Home CO2, SN:	:792, SW:9	V 🔍 Suchen	💥 Einstell	ung 📦	Daten holen	Speichern als	📔 Datei ö	ffnen 🛛 🔲 Spek	trum /		~ 24
	Diagramm 31 Berechr	nung										
	Überschrift / Projekt		Dokumentation vor	Radon Visio	ז ז 7							25
	Exponierte Person oder	Gruppe	Softwareentwickler							•		25
	Auswertefenster		Anfang 2020-02-14		□ ▼ 1	8:00:00 🗘	-	Ende 2020-02-17				-26 -27
	Filter		iCal-Datei importier	ren						• •	. aktiviert	/
	Messort		Büro I/15							•		<u> </u>
	Gerät		RTM1688-2 SN: 340	•								<u> </u>
	Kommentar		Übersichtsmessung) in Gebäude	с •-						~	30
	Verantwortlich für die M	lessung	Michael Strey							•		31
Metadaten	Dosis Radon-222		Gleichgewichtsfakto 0,4	r Dosis-L	mrechni 7,	ungskoeffizient 8 nSv m³ (Bq h) ¹	•					32
	Anfang	Ende	Expositionsd	auer Daten	sätze R	adon-Mittelwert	Radonexposition	Radondosis Th	noron-Mittelwert F	ehler (Thoron-Mittelwert) Th	noronexposition	
				in h		in Bq/m³	in Bqh/m³	in µSv	in Bq/m³	in %	in Bqh/m³	0.0
lisse	2020-02-15T00:34:00	2020-02-15T05:	34:00	5,0	5	1.320	• 0.6U1	20,6	50	39	197	<u> </u>
debr	2020-02-16T05:34:00	2020-02-16T11:	34:00	6,0	6	1.605	9.633	30,1	<13	< Nachweisgrenze	0	
ŭ	Gesamt			<u>11,0</u>	11	<u>1.476</u>	<u>16.234</u>	<u>50,7</u>	<u>20</u>	<u>64</u>	<u>197</u>	
" C	: \Program Files (x86) \Rac	donVision\Templati	es\tmp-report.xlsx"			😕 🗌 mit all	en Daten	Bericht/Export				
		•				-		•	-			
		36				35		34				

Abbildung 5.2.: Bedien- und Anzeigeelemente im Berechnung-Tab

- 25. Einschränkung des betrachteten Zeitraumes zusätzlich zum Filter. Diese Einstellung kommt zum Tragen, wenn Exposition und Dosis in dem Bericht z.B. wochen- oder monatsweise ausgewiesen werden sollen.
- 26. iCalendar-Datei, die zur zeitlichen Filterung der Messwerte bei der Berechnung von Mittelwerten, Exposition und Dosis verwendet werden soll.
- 27. Die iCalendar-Datei kann deaktiviert werden, wenn der Zeitfilter im Diagramm manuell gesetzt werden soll.
- 28. Ort, an dem das Messinstrument aufgestellt war,
- 29. Typbezeichnung und Seriennummer des Messinstruments, mit dem die Messung ausgeführt wurde – wird automatisch bestimmt,
- 30. Mehrzeiliger Kommentar zur näheren Erläuterung der Umstände der Messung.
- 31. die Person, die den Bericht unterschreibt,
- 32. Gleichgewichtsfaktor und Dosiskonversionskoeffizient für die Dosisberechnung. Die Werte in diesen Feldern müssen in aller Regel nicht verändert werden.
- 33. Ergebnistabelle mit je einer Zeile für jedes betrachtete Integrationsintervall,

- 34. Schaltfläche zum Start der Berichtserstellung. Der Bericht wird automatisch mit Excel oder LibreOffice Calc geöffnet, wenn eines dieser Programme auf Ihrem Computer installiert ist.
- 35. Mit einem Häckchen in diesem Feld können Sie bewirken, dass nicht nur der Bericht, sondern auch alle Messdaten in Form zusätzlicher Tabellenblätter in der exportierten Datei erscheinen.
- 36. Vorlage, die bei der Erstellung des Berichtes verwendet werden soll. Diese können Sie selbst nach ihren Bedürfnissen anpassen (s. Abschnitt 5.6).

5.2. Anschließen des Messinstruments

Die meisten aktuellen Messinstrumente der Firma SARAD können einfach über das mitgelieferte USB-Kabel mit dem PC, auf dem *Radon Vision 7* läuft, verbunden werden. Einige Geräte gestatten als Alternative die Verwendung ihres RS-232-Anschlusses über das mitgelieferte Kabel mit 9-poligem D-Sub-Stecker. Dies setzt voraus, dass Ihr PC noch über eine physische RS-232-Schnittstelle (COM-Port) verfügt. Die Geräte *DOSEman* und *DOSEman PRO* verwenden einen Infrarot-Adapter zum Datenaustausch. *Radon Vision 7* unterstützt sowohl die älteren Typen mit RS-232-Anschluss als auch die aktuelle USB-Variante.

In jedem Fall sucht *Radon Vision 7* beim Start automatisch nach allen angeschlossenen Messinstrumenten und trägt diese in die Dropdown-Liste der verbundenen Geräte ein. Wenn Sie Ihr Messinstrument erst nach dem Start von *Radon Vision 7* angeschlossen haben, dann können Sie mit einem Klick auf die *Suchen*-Schaltfläche die Dropdown-Liste ergänzen.

5.3. Gerätekonfiguration

Mit Ctrl + E oder einem Klick auf die Schaltfläche *Einstellung* (3 in Abbildung 5.1) öffnen Sie den in Abbildung 5.3 bzw. 5.4 gezeigten Dialog für die Konfiguration Ihres Messinstruments. *Radon Vision 7* unterstützt eine Vielzahl von Geräten, die alle unterschiedliche Eigenschaften haben, sodass, von Gerät zu Gerät unterschiedlich, immer nur ein Teil der im Folgenden beschriebenen Einstellungsmöglichkeiten besteht.

5.3.1. Geräte der Radon-Scout-Familie, Thoron Scout und RTM 1688-2

- **Start/Stop** Alle Einstellungen im Zusammenhang mit dem Beginnen oder Beenden einer Messkampagne:
 - Löscht alle im Speicher des Gerätes abgelegten Messdaten. Bei laufender Messung wird das aktuelle Intervall abgebrochen und mit der eingestellten Integrationszeit neu begonnen.
 - $^{\textcircled{}}$ Stellt die Echtzeituhr des Gerätes auf die Systemzeit des PC. Dies kann bei laufender Messung erfolgen.
 - Startet eine neue Messkampagne.

Abbildung 5.3.: Gerätespezifischer Dialog für die Geräteeinstellungen der Instrumente der Radon-Scout-Familie

Beendet eine laufende Messkampagne.

Info Anzeigen zum Gerätezustand und den letzten Messwerten:

- Misst die Spannung der Batterien. Entsprechend des verwendeten Typs kann der Ladezustand abgeschätzt werden. Bei Messinstrumenten mit Monozellen wird die Zellspannung, bei allen anderen Geräten die Gesamtspannung der Batterie angezeigt.
- Öffnet ein Fenster mit einer Werteliste des letzten Messintervalls. Voraussetzung ist, dass das erste Integrationsintervall bereits abgeschlossen ist.
- **Verriegelung** Das Beenden einer laufenden Messkampagne mit dem Schalter bzw. Taster am Gerät sowie die Messwertanzeige am Display können Sie softwaremäßig blockieren. Diese Einstellung ist auch bei laufender Messkampagne möglich.
 - Erlaubt den Start und das Beenden einer Messkampagne am Gerät. Anzeige der Messwerte am Display.
 - Verriegelung des Schiebeschalters bzw. Tasters. Die Messung kann nur einmal gestartet und danach nicht mehr unterbrochen werden. Die Messwerte werden nicht angezeigt.
- **Intervall** Setzt das Integrationsintervall zur Berechnung der Radonkonzentration. Das Integrationsintervall kann auch während einer bereits laufenden Messung geändert werden.
 - Intervall = 3 h. Bei Änderung während der Messung wird das bereits angefangene 1-Stunden-Intervall auf drei Stunden erweitert.
 - Intervall = 1 h. Wenn bereits mehr als eine Stunde des laufenden 3-Stunden-Intervalls abgelaufen ist, wird das laufende 3-Stunden-Intervall vervollständigt und danach in den 1-Stunden-Zyklus gewechselt. Ist weniger als eine Stunde des laufenden 3-Stunden-Intervalls abgelaufen, ist das laufende Intervall das erste 1-Stunden-Intervall.

Messintervall Länge des Integrationsintervalls in Minuten

Alarmierung Einstellungen für Geräte mit visueller oder akustischer Alarmierung:

Alarmschwelle Schwellwert für die Auslösung eines Alarms am Messinstrument.

Summer

Aus Der eingebaute akustische Signalgeber ist stets ausgeschaltet.

- Alarm Bei Überschreitung der eingestellten Alarmschwelle wird jede Minute ein vier Sekunden langer Signalton erzeugt, der durch einmaliges Betätigen der Taste deaktiviert werden kann. Überschreitet der Messwert erneut die Alarmschwelle, wird der Vorgang wiederholt.
- **Po-216** Jeder registrierte Zerfall eines Po-216-Atoms wird durch einen kurzen Ton signalisiert.
- **Po-216/Po-218** Der Signalton wird zusätzlich zum Po-216 auch bei registrierten Po-218-Zerfällen erzeugt.
- **Einheiten** Hier wird eingestellt, mit welchem Maßeinheitensystem die Messdaten auf dem Display des Messinstruments angezeigt werden. Die Darstellung der Werte in *Radon Vision 7* ist von dieser Einstellung unabhängig.
- **Pumpen-Modus** Arbeitsregime der im *RTM 1688-2* eingebauten Pumpe:

ständig ein Die Pumpe läuft während der gesamten Messzeit.

- **Intervall** Die Pumpe läuft jeweils während der ersten 5 Minuten eines Integrationsintervalls. Ist das eingestellte Integrationsintervall kleiner oder gleich 5 Minuten, wird kontinuierlich gepumpt.
- **Radon-Modus** Diese Einstellung ist nur für die Anzeige am Gerät maßgeblich. Bei der späteren Anzeige der Datenreihen am Computer bzw. in den generierten Textdateien erscheinen die Werte beider Berechnungen.
 - **schnell** Es werden ausschließlich die Zerfälle des Po-218 zur Berechnung der Radonkonzentration verwendet. Der volle Messwert wird bereits nach 15 Minuten erreicht. Die Sensitivität ist im Vergleich zur Einstellung *langsam* halbiert, so dass sich der statistische Fehler vergrößert.
 - **langsam** Es werden die Zerfälle des Po-218 und des Po-214 zur Berechnung der Radonkonzentration verwendet. Aufgrund der längeren Halbwertzeiten der zwischengelagerten Nuklide Pb-214 und Bi-214 erhöht sich die Ansprechzeit bis zum Erreichen des vollen Messwertes auf ca. 150 Minuten. Die Sensitivität verdoppelt sich im Vergleich zur Einstellung *schnell*. Der statistische Fehler verringert sich entsprechend.
- **Lucas-Zelle** Im *Radon Scout PMT* können je nach Anwendung Szintillationskammern (Lucas-Zellen) unterschiedlicher Größen verwendet werden. Da die Sensitivität direkt vom Kammervolumen abhängt, werden im Gerät vier verschiedene Kalibrierfaktoren abgespeichert. Diese sind den Kammergrößen S, M, L und XL zugeordnet. Mit der Einstellung der

entsprechenden Kammergröße wird der *Radon Scout PMT* angewiesen, diese zur Berechnung des Radon-Wertes zu verwenden. Es ist deshalb stets auf eine korrekte Einstellung dieses Parameters entsprechend der tatsächlich verwendeten Kammer zu achten. Die Kammergrößen sind auf den Außenflächen der Lucas-Zellen angebracht.

5.3.2. Geräte der DOSEman-Familie, RTM 1688 und Analogsensor

Der Setupdialog (Abbildung 5.4) ist bei diesen Messinstrumenten nur zugänglich, wenn sich das Gerät in der Betriebsart *Stand by* befindet.

DOSEman SN: 60		×
	Country Code 49 Con Region Code 1 Con Entry Code 1 Con User ID 1 Cocked Con Con Con Con Con Con Con Con Con Con	
Bqm² mV	Alarm Level 1000 μSv Sampling Interval C Slow 60 Minutes	

Abbildung 5.4.: Dialog für die Geräteeinstellungen der Instrumente der DOSEman-Familie

- Testellt die Echtzeituhr des Gerätes auf die Systemzeit des PC.
- Alle im Speicher des Gerätes abgelegten Daten werden gelöscht und eine neue Messkampagne gestartet.
- Beendet eine laufende Messkampagne.
- Schaltet das Gerät aus. Es darf vorher keine neue Messung gestartet werden. Das Einschalten ist nur durch Betätigen der Gerätetaste möglich. Bei den Analogsensoren ist diese Funktion nicht aktiv.
- Öffnet das in Abbildung 5.6 gezeigte Dialogfenster f
 ür die erweiterten Setup- und Testfunktionen der Analogsensoren.
- Ländercode, Regionscode, Zugangscode Frei verwendbare Nummern zur örtlichen Zuordnung der Messdaten. Der Wertebereich ist jeweils 0 bis 255.
- **Nutzerkennung** Frei verwendbare Nummer zur personellen Zuordnung der Messdaten, wie z. B. Personalnummer. Der Wertebereich ist 0 bis 65 535.

- **Alarmschwelle** Legt den Grenzwert fest, bei dessen Überschreitung ein akustischer Alarm ausgegeben wird. Der Grenzwert ist im Bereich von 0 μSv bis 20 000 μSv anzugeben (zur Dosisberechung vgl. Abschnitt Dosisberechung für *DOSEman* und *DOSEman PRO*).
- **Messintervall** Einstellung des Integrationsintervalls. Definiert den zeitlichen Abstand zwischen den einzelnen Punkten der aufgenommenen Messreihe. Der Einstellbereich ist 1 min bis 255 min.

F + **g** s. Abschnitt Dosisberechung für *DOSEman* und *DOSEman PRO*

Summer Schaltet den Tastenton bei DOSEman und DOSEman PRO an oder aus.

Taster

- Verriegelt Die Messung kann nur über die Software gestartet oder gestoppt werden. Ein versehentliches Ausschalten bei laufender Messung wird somit verhindert. Dieser Modus sollte bei jeder längeren Messung eingestellt werden, da sich das Gerät bei entladenem Akku selbständig ausschaltet und ein zweimaliges, unbeabsichtigtes Betätigen der Taste zum Neustart der Messung und zum Verlust der bisher gespeicherten Daten führen kann. Die Umschaltung der Displayanzeige per Tastendruck ist möglich.
- **Entriegelt** Die Messung kann mit einem kurzen Tastendruck gestartet und das Gerät durch Betätigen der Taste für ca. fünf Sekunden ausgeschaltet werden.
- **Radon-Modus** Diese Einstellung ist nur für die Anzeige am Gerät maßgeblich. Bei der späteren Anzeige der Datenreihen am Computer bzw. in den generierten Textdateien erscheinen die Werte beider Berechnungen.
 - **langsam** Es werden die Zerfälle des Po-218 und des Po-214 zur Berechnung der Radonkonzentration verwendet. Aufgrund der längeren Halbwertzeiten der zwischengelagerten Nuklide Pb-214 und Bi-214 erhöht sich die Ansprechzeit bis zum Erreichen des vollen Messwertes auf ca. 150 Minuten. Die Sensitivität verdoppelt sich im Vergleich zur Einstellung *schnell*. Der statistische Fehler verringert sich entsprechend.
 - schnell Es werden ausschließlich die Zerfälle des Po-218 zur Berechnung der Radonkonzentration verwendet. Der volle Messwert wird bereits nach 15 Minuten erreicht. Die Sensitivität ist im Vergleich zur Einstellung *langsam* halbiert, so dass sich der statistische Fehler vergrößert.
- Überträgt die im Gerät eingestellten Parameter zum PC.
- 🦻 Überträgt die geänderten Einstellungen zum Gerät.

Dosisberechung für DOSEman und DOSEman PRO

Bei den Geräten *DOSEman* und *DOSEman PRO* wird mit Hilfe eines Dosiskonversionskoeffizienten g aus der Radonfolgeproduktkonzentration eine Äquivalenzdosis berechnet. Ein Klick auf F + g öffnet den in Abbildung 5.5 gezeigten Dialog zum Einstellen der Koeffizienten.

Abbildung 5.5.: Dialog für die Einstellung der Koeffizienten zur Dosisberechung

Da die Dosisberechnung stets auf der Folgeproduktexposition beruht, muss im Falle der Radon-Expositionsmessung beim *DOSEman* der Gleichgewichtsfaktor F angegeben werden. Dieser bestimmt das Verhältnis zwischen Radongas und seinen Folgeprodukten. Bei unbekanntem oder nicht vorgegebenen Gleichgewichtsfaktor ist dieser mit 0,4 zu wählen.

In der Auswahlliste befinden sich als Vorgabewerte die derzeit gültigen Koeffizienten *g* jeweils für beruflich Exponierte (*Arbeiter*) und die allgemeine Bevölkerung (*Allgemeinheit*). Es können abweichende Werte in das Textfeld eingegeben werden, falls spezielle Vorschriften dies erfordern.

Die Äquivalenzdosis E wird dann aus der Exposition P_{Rn} wie folgt berechnet:

$$E = P_{Rn} \cdot F \cdot g_{EEC}$$

mit

$$[g_{EEC}] = \frac{\mathrm{Sv}}{\mathrm{Bq}\,\mathrm{h}\,\mathrm{m}^{-3}}$$

Für den *DOSEman PRO*, bei dem die Konzentration der Zerfallsprodukte direkt gemessen wird, gilt entsprechend:

mit

$$E = P_{PAEC} \cdot g_{pot}$$
$$[g_{pot}] = \frac{Sv}{J h m^{-3}}$$

Hinweis

Beim DOSEman wird das Produkt $F \cdot g_{EEC}$ zu einem Faktor zusammengefasst und im Gerät gespeichert. Beim Öffnen des Dialoges wird der aktuell eingestellte Faktor vom Gerät geladen. Da durch die Zusammenfassung von F und g_{EEC} nicht mehr eindeutig auf beide Faktoren geschlossen werden kann, wird die Voreinstellung "Arbeiter" angenommen und der zugehörige Gleichgewichtsfaktor berechnet und angegeben.

Bei Verwendung von abweichenden Dosiskonversionskoeffizienten ist immer dieser zuerst und danach der Gleichgewichtsfaktor einzustellen. Aufgrund des geräteinternen Datenformates können sich beim Rücklesen der Koeffizienten Rundungsfehler ergeben.

		DAC Test	Badon/EEC
Range [10000	Bq/m ^s	AOut1 [mV] //00	no value
Alarm 1000	Bq/m ^o	AOut2 [mV] 300	Thoron/Po-218
			no value
Analog Output 2 (Tho	on/Po-218)	Set DAC	Tanana tan
Range 10000	Bq/m [®]		remperature Humidity
Alarm 1000	Bq/mº	-Switch Test	Analog Out 1 Analog Out 2 not valid not valid
Alarm		ON OFF	not valid not valid
Pulse			
🗖 ROI1	R014	Set Switch	Timer Interval 30
ROI2	E ROI5		👘 🕋 🔤
E ROI3	□ rH/T		

Zusätzliche Setup- und Testfunktionen für Analogsensoren

Abbildung 5.6.: Zusätzliche Einstellmöglichkeiten für die Analogsensoren

Analogausgang 1, Analogausgang 2

- **Bereich** legt den Messbereich fest, für den eine Ausgangsspannung von 0 V bis 1 V generiert wird. (z. B. führt die Einstellung von 25 000 Bq m⁻³ zu 0 V bei 0 Bq m⁻³ und 1 V bei 25 kBq m⁻³).
- Alarm definiert, ab welchem Messwert der Digitalausgang, wenn dieser als Alarmausgang konfiguriert wurde, aktiviert wird.

Modus Digitalausgang

Alarm Digitalausgang als Alarmausgang konfiguriert

- Impulse Digitalausgang als Impulsausgang konfiguriert
- **ROI1** ... **ROI5** festgelegte Energiebereiche, die bei der Impulsausgabe am Digitalausgang für die Impulsbildung berücksichtigt werden
- **rH/T** Wenn der Digitalausgang als Impulsausgang konfiguriert wurde, werden die beiden Analogausgänge mit den Messwerten für Temperatur und Feuchte belegt. Andernfalls wird die Radonkonzentration als Analogwert parallel ausgegeben.
- **DAC-Test** Diese Option bietet bei angehaltener Messung eine Testmöglichkeit für die korrekte Arbeit der Analogausgänge. Die in den Eingabefeldern eingetragenen Spannungen im Bereich von 0 mV bis 1000 mV können nach Klick auf Set DAC an den Analogausgängen gemessen werden.

- **Test Schaltausgang** schaltet den Digitalausgang zu Testzwecken um. Die Messung muss gestoppt sein.
- **Aktuelle Messwerte** Zur Kontrolle der fehlerfreien Operation des Analogsensors kann die Messung innerhalb des Dialoges gestartet und gestoppt werden. Aktuelle Messdaten können bei laufender Messung vom Gerät gelesen werden.
 - Döscht vorhandene Daten und startet eine neue Messung.
 - Beendet eine laufende Messung.
 - ^{**} Auf Klick werden die aktuellen Daten geladen. Voraussetzung ist, dass das erste Integrationsintervall bereits abgeschlossen ist. Die Daten werden in den Ausgabefeldern darüber angezeigt. Neben den berechneten Konzentrationen sowie Temperatur und Feuchte werden auch die analogen Ausgangswerte entsprechend den vorgenommenen Bereichseinstellungen angezeigt.
 - **Timer, Intervall** Wenn das Feld *Timer* markiert ist, werden die aktuellen Daten in durch das Feld *Intervall* definierten Abständen automatisch vom Gerät geholt.

5.4. Darstellen und Analysieren der Messdaten

5.4.1. Auslesen der Messdaten

Mit einem Klick auf die Schaltfläche *Daten holen* (4 in Abbildung 5.1) oder Ctrl+G starten Sie das Auslesen der Messdaten aus Ihrem Messinstrument. In dem sich daraufhin öffnenden Fenster wird die Zahl der bereits heruntergeladenen Datensätze angezeigt, bis der Download abgeschlossen ist.

Hinweis

Bei den Messinstrumenten der *DOSEman*-Familie kann die Datenübertragung nicht abgebrochen werden. Sie läuft selbst dann noch im Hintergrund weiter, wenn das Download-Fenster geschlossen wurde. Bei diesen Geräten wird anstelle der heruntergeladenen Messwertsätze die Zahl der vom Messinstrument empfangenen Botschaften angezeigt.

Bei allen anderen Messinstrumenten können Sie den Download, der bei vielen gespeicherten Messdaten lange dauern kann, abbrechen, indem Sie das Download-Fenster schließen. In diesem Fall werden im Diagramm nur die bereits geladenen Daten angezeigt.

5.4.2. Zoomen und Verschieben

Tabelle 5.1 listet die einfachen Möglichkeiten zum Verändern der Achsenskalierung und der Position der Messwertlinien im Diagramm auf. Zusätzlich gibt es die im Abschnitt 5.4.6 auf Seite 38 beschriebenen sehr umfangreichen Funktionen zur Änderung des Diagramms.

Ziel	Operation mit der Maus
Zoom In der Zeitachse	a) Von links nach rechts ziehen mit rechter Maustaste
	b) Ziehen am Ende des Anzeigebereichs
Zoom Out der Zeitachse	Von rechts nach links ziehen mit rechter Maustaste
Scrollen entlang der Zeitachse	Ziehen im Diagramm oder auf der Zeitachse
Zoom In der unteren y-Achse	Nach oben ziehen auf der Achse
Zoom Out der unteren y-Achse	Nach unten ziehen auf der Achse
Zoom In der y-Achse	ी + Klick auf der Achse
Zoom Out der y-Achse	Ctrl + Klick auf der Achse
Scrollen der oberen y-Achsen	Ziehen auf der Achse

Tabelle 5.1.: Zoomen und Verschieben im Diagramm

Beim Öffnen einer Messwertdatei werden die Start- und Endwerte der y-Achsen stets automatisch so gesetzt, dass alle Werte im Diagramm dargestellt sind. Beim Wechsel der Kampagne bleiben der manuell geänderte Zoom-Zustand der y-Achsen und die Start- und Endwerte der y-Achsen erhalten.

5.4.3. Kampagnen auswählen

Eine Messkampagne umfasst jeweils zusammengehörige Messwerte zwischen dem Beginn und dem Ende einer Messung (vgl. Abschnitt 3.1). Da in aller Regel die Daten einer Messkampagne zusammen ausgewertet werden sollen, verfügt *Radon Vision 7* über die in Tabelle 5.2 aufgelisteten Funktionen zur exklusiven Darstellung einzelner Kampagnen im Diagramm.

Tabelle 5.2.: Kampagnen im Diagramm und über die Dropdown-Liste auswählen

Ziel	Operation
einzelne Kampagne anzeigen	a) Doppelklick innerhalb der Kampagne im Diagramm b) Kampagne in Dropdown-Liste (14 in Abbildung 5.1 auf Seite 25) auswählen
Kampagne wechseln alle Kampagnen anzeigen	Kampagne in Dropdown-Liste auswählen <i>alle</i> in Dropdown-Liste auswählen

Hinweis

Wenn Sie eine Kampagne ausgewählt haben und die selbe Kampagne noch einmal in der Dropdown-Liste auswählen oder im Diagramm doppelklicken, dann wird die Zeitachse ganz ausgezoomt und die Kampagne in voller Länge angezeigt.

5.4.4. Markieren von Integrationsintervallen

Für die Berechnung von Mittelwerten, Exposition und Dosis müssen Integrationsintervalle markiert werden, mit denen festgelegt wird, über welche Bereiche entlang der Zeitachse diese Berechnungen durchgeführt werden sollen. In *Radon Vision 7* ist es möglich, eine beliebige Anzahl solcher Intervalle zu definieren. Dies kann einerseits manuell, im Diagramm mit den in Tabelle 5.3 aufgeführten Funktionen geschehen, andererseits mit dem Import einer iCalendar-Datei. Der letztere Weg ist in aller Regel sinnvoller. Er wird in Abschnitt 5.5 ausführlich beschrieben.

Tabelle 5.3.: Integrationsintervalle im Diagramm manuell markieren

Ziel	Operation mit der Maus
Markieren von Integrationsintervallen	î + Maus über den Bereich bewegen
Markierung entfernen	Ctrl + Maus über den Bereich bewegen
ganze Kampagne markieren	î + Doppelklick
Markierung der Kampagne entfernen	Ctrl + Doppelklick

Hinweis

Die Integrationsintervalle werden im Diagramm nur dann angezeigt, wenn mindestens ein *Integration Range* in der Legende markiert ist (vgl. Abbildung 3.4 auf Seite 17). Die Integrationsintervalle sind aber gleichwohl aktiv, auch wenn Sie im Diagramm nicht angezeigt werden.

5.4.5. Spektrumsanzeige

Für Geräte mit integrierter Alpha-Spektroskopie kann das akquirierte Spektrum in einem separaten Fenster angezeigt werden (Abbildung 5.7). Die zur Berechnung der Radon-Messgrößen definierten Energiebereiche – auch *regions of interest* oder *ROI* genannt – werden durch senkrechte Linien mit Angabe des jeweiligen Nuklids, der Bereichsgrenzen und der darin enthaltenen Zählimpulse dargestellt. Beim *RTM 1688-2* und *Thoron Scout* wird das Spektrum für jeden einzelnen Messwertsatz gespeichert. Deshalb ändert sich bei diesen Geräten die Spektrumsansicht, wenn Sie mit der Maus über das Hauptdiagramm fahren. Wenn Integrationsintervalle markiert sind, dann enthält das Spektrum die Summen der innerhalb des markierten Zeitbereiche detektierten Zählimpulse. Bei den Geräten der *DOSEman*-Familie wird dagegen immer das Summenspektrum der gesamten Messwertdatei angezeigt.

Das Fenster mit der Spektrumsansicht kann auf den Andockbereich am rechten Rand des *Diagramm*-Tabs gezogen und so fest neben dem Hauptdiagramm platziert werden (Abbildung 5.8).

Abbildung 5.7.: Spektrumsanzeige

Abbildung 5.8.: Angedockte Spektrumsanzeige und Glättung mit gleitendem Mittelwert über zwei Perioden

5.4.6. Diagrammansicht verändern

Legende

In der Legende (10 in Abbildung 5.1) können Sie festlegen, welche der gemessenen Parameter im Diagramm dargestellt werden sollen. Außerdem können Fehlerbalken und markierte Integrationsintervalle (vgl. Abschnitt 5.4.4) ein- oder ausgeblendet werden. Die Einstellungen hier haben auch Einfluss auf den Inhalt der Ergebnistabelle (33 in Abbildung 5.2) im *Berechnung-*Tab (vgl. Abschnitt 5.5). Dort werden nur die Parameter angezeigt, die im Diagramm zu sehen sind.

Glättung

Messungen in Konzentrationsbereichen nahe der Nachweisgrenze eines Messgerätes führen zu starken statistischen Schwankungen der Einzelwerte einer Messreihe. Diese können durch die Glättungsfunktion (13 in Abbildung 5.1) reduziert werden. Die Glättungsfunktion bildet einen gleitenden Mittelwert über die eingestellte Anzahl von Messintervallen (Perioden). Zusammen mit der Glättungsfunktion wird eine interpolierende Spline-Funktion aktiviert, die zur Glättung der Messwertlinien führt. Deshalb sehen Sie schon mit der Einstellung *1 Periode*, bei der der gleitende Mittelwert noch mit dem Verlauf der Originaldaten identisch ist, einen ansprechend abgerundeten Kurvenverlauf.

Prinzipiell sollten Sie bei der Wahl des Glättungsparameters beachten, dass auch tatsächlich vorhandene kurzzeitige Konzentrationsänderungen der Glättung ebenso unterliegen wie statistische Schwankungen.

Die in den markierten Integrationsintervallen angezeigten Säulen basieren auch bei eingeschalteter Glättung auf den Originalmessdaten.

Die im oberen Teil des Diagramms angezeigten Umgebungsparameter sind bei den für Radon üblichen langen Messintervallen von statistischen Messfehlern kaum betroffenen. Für sie wird deshalb bei eingeschalteter Glättungsfunktion kein gleitender Mittelwert berechnet, wohl aber die, die Kurve abrundende, Spline-Funktion aktiviert.

Komplexe Bearbeitungsfunktionen

Über das Hauptmenü Diagramm Diagramm bearbeiten oder über den entsprechenden Eintrag im Popup-Menü, das Sie mit einem Rechtsklick links oder rechts neben dem Diagramm öffnen, kommen Sie in ein Fenster (Abbildung 5.9), das Ihnen sehr umfangreiche Möglichkeiten eröffnet, das Diagramm kreativ zu verändern.

Die vollständige Dokumentation dieser Funktionen würde den Umfang dieses Handbuches sprengen. Wir verweisen deshalb hier auf die Dokumentation des Herstellers der für die Diagrammdarstellung verwendeten Softwarekomponente.

Warnung

Der Menüpunkt wurde nicht umsonst mit dem Hinweis *(experimentell)* markiert. Sie haben hier alle Möglichkeiten, Unfug anzurichten. Zur Not hilft aber immer ein Neustart der App, um wieder zurück zu einer sinnvollen Darstellung zu kommen.

Sinnvolle Anwendungen sind z. B.:

- Änderung einzelner Farben
- Einblenden der ungeglätteten Kurve zusätzlich zur geglätteten
- Ändern der Achsenbeschriftungen
- Ändern der Minimum- und Maximumwerte der Achsen
- Hinzufügen einer Überschrift oder Fußzeile
- Einfügen einer Grenzwertlinie

Als exemplarisches Beispiel für eine sinnvolle Anwendung sei mit den Abbildungen 5.9 bis 5.15 erläutert, wie man eine horizontale Linie zur Markierung eines Radon-Grenzwertes erzeugt.

Abbildung 5.9.: Grenzwertlinie - Schritt 1

5.4.7. Druck und Export

Zusätzlich zu den schon im vorigen Abschnitt beschriebenen Wegen über das Haupt- und das Popup-Menü gibt es noch einen dritten Weg, auf die Funktionen zur Bearbeitung, zum Druck, Export und Kopieren in die Zwischenablage zuzugreifen: Unter Ansicht Diagramm-Werkzeugleiste können Sie eine zusätzliche Werkzeugleiste einblenden. Abbildung 5.16 zeigt alle drei Optionen in einem Bildschirmausschnitt.

Abbildung 5.17 zeigt die Vorschau für den Diagrammdruck. Neben der Ausrichtung auf dem Papier, Rändern und Seitenverhältnis sowie den in jedem Druckdialog üblichen Einstellmöglichkeiten, können Sie auch die Detailliertheit des Ausdruckes festlegen.

Abbildung 5.10.: Grenzwertlinie – Schritt 2

Abbildung 5.11.: Grenzwertlinie – Schritt 3

Abbildung 5.12.: Grenzwertlinie – Schritt 4

Abbildung 5.13.: Grenzwertlinie – Schritt 5

Abbildung 5.14.: Grenzwertlinie - Schritt 6

Abbildung 5.15.: Diagramm mit Grenzwertlinie

Abbildung 5.16.: Drei Arten des Zugriffs auf Diagrammfunktionen

Abbildung 5.17.: Druckvorschau

Unter dem Menüpunkt Diagramm speichern könne Sie das Diagramm in den Dateiformaten EMF, WMF, BMP und JPG speichern, unter Diagramm kopieren schließlich auch über die Zwischenablage kopieren.

5.5. Berechnung von Exposition, Dosis und Mittelwerten

5.5.1. Anzeige der berechneten Werte

Zur Anzeige der berechneten Mittelwerte, Expositionen und Dosiswerte dient der in Abbildung 5.2 auf Seite 26 gezeigte *Berechnung*-Tab. Sobald im Diagramm ein oder mehrere Bereiche, so wie in Abschnitt 5.4.4 beschrieben, als Integrationsintervalle markiert wurden, zeigt die Ergebnistabelle (33 in Abbildung 5.2) die entsprechenden Werte für jedes einzelne Integrationsintervall und für die Gesamtheit aller Integrationsintervalle an. Dabei werden nur die Parameter berücksichtigt, die in der Legende des Diagramms zur Anzeige ausgewählt sind. So wird z. B. der Thoron-Mittelwert nicht angezeigt, wenn die Thoron-Kurve im Diagramm ausgeblendet ist. Exposition und Dosis werden nur dann angezeigt, wenn das ausgewählte Integrationsintervall auch im Diagramm zur Anzeige gebracht wird. Schließlich erscheinen die relativen Fehlerwerte nur dann in der Ergebnistabelle, wenn im Diagramm die Fehlerbalken eingeblendet sind.

Zusammen mit der Exposition wird stets auch die Dosis angezeigt, auch wenn das Messinstrument selbst kein Dosimeter ist und keine Dosis anzeigen kann.

5.5.2. Nachweisgrenze und Expositionsberechnung

Bei allen Messinstrumenten, die das Alpha-Spektrum erfassen und so verschiedene Nuklide als Quellen der Alpha-Energie unterscheiden können, erschwert das sogenannte *Tailing* die sichere Unterscheidung der radioaktiven Nuklide in ihrem Gemisch.

In Abbildung 5.7 ist ein Spektrum zu sehen, wie es typischerweise von den Zerfallsprodukten von ^{222}Rn gebildet wird. Im gleichen Bild ist der Schwanz (engl. *tail*) der ^{214}Po -Verteilung markiert, der nach links in die *region of interest* (ROI) des für die Thoron-Messung bedeutsamen ^{216}Po reicht. Das Tailing einer hohen Radonkonzentration wird so die Peaks einer geringen Thoronkonzentration im Spektrum verdecken. In den ROIs für Thoron werden also Zerfälle gezählt, man kann aber trotzdem nicht sagen, ob und wie viel Thoron in dem Gemisch war. Man kann lediglich feststellen: "Falls Thoron in dem Gemisch war, dann waren die davon herrührenden Zerfallsimpulse auf jeden Fall weniger als die, die wir in den Thoron-ROIs gezählt haben (und dem Radon zuschreiben müssen)."

Eine ausführliche Betrachtung zu diesem komplexen Thema finden Sie in unserer Application Note AN-004, "Thoronmessungen mit dem RTM 1688-2" [2].

Aus der Maskierung durch das Tailing ergibt sich so die *Nachweisgrenze*. Wenn die in einem Integrationsintervall ermittelte mittlere Aktivitätskonzentration unterhalb der Nachweisgrenze liegt, so ist dies in der Ergebnistabelle durch ein Kleinerzeichen und eine entsprechende Anmerkung in der Fehlerspalte markiert.

Als *Exposition* bezeichnet man das Produkt aus Konzentration (in Bq m^{-3}) und Aufenthaltsdauer (in h). Die in der Ergebnistabelle angegebenen Expositionen beziehen sich also immer auf eine Person, von der man annimmt, sie habe sich während des gesamten Integrationsintervalls in der Nähe des Messinstruments aufgehalten.

Intern berechnet *Radon Vision 7* die Exposition für jeden einzelnen Messwert und summiert die einzelnen Werte innerhalb des markierten Integrationsintervalls auf. Dabei kann es vorkommen, dass für einzelne Messwerte die gemessene Konzentration unter der Nachweisgrenze liegt. Für diese Perioden wird die Exposition mit Null angenommen. Wie in Abbildung 5.2 am Thoron-Mittelwert in der zweiten Zeile der Ergebnistabelle zu sehen ist, kann sogar ein ganzes Integrationsintervall unterhalb der Nachweisgrenze liegen. Dessen ungeachtet können einzelne Messwerte innerhalb dieses Integrationsintervalls sehr wohl über der Nachweisgrenze gelegen haben. Für diese Perioden ist dann natürlich auch die Exposition größer Null. So kommt es, dass die Exposition in der Ergebnistabelle i. Allg. nicht einfach dem Produkt aus Mittelwert und Expositionsdauer entspricht.

5.5.3. Dosisberechnung

In *Radon Vision 7* wird neben der Exposition immer auch eine Dosis berechnet und in der Ergebnistabelle angezeigt, unabhängig davon, ob es sich bei dem verwendeten Messinstrument um ein Dosimeter handelt oder nicht. Im Falle des Einsatzes von Dosimetern (*DOSEman, DOSEman PRO*) können die zur Dosisberechnung verwendeten Koeffizienten in *Radon Vision 7* auch verschieden von den auf dem Gerät verwendeten Koeffizienten sein.

Damit kann prinzipiell jedes Radon-Messinstrument, das klein genug ist, um am Körper getragen zu werden, und sensitiv genug, um über die Tragedauer statistisch signifikante Messwerte zu liefern, als Dosimeter verwendet werden. Insbesondere wäre neben dem *DOSEman* der *Radon Scout Professional* für diese Art der Anwendung besonders geeignet. Die Auswertung zur Ermittlung der *Personendosis* ist in diesem Fall einfach. Vor jedem Einsatz werden alle alten Messdaten vom Gerät gelöscht. Die Messwertdatei des Einsatzes enthält dann nur eine Kampagne. Wie in Abschnitt 5.4.4 beschrieben, wird die gesamte Kampagne mit 1 + Doppelklick markiert und in der Ergebnistabelle erscheint die Dosis. Die voreingestellten Koeffizienten *Gleichgewichtsfaktor* und *Dosis-Umrechnungskoeffizient* (32 in Abbildung 5.2) müssen in aller Regel nicht geändert werden.

Wurde das Messinstrument während der markierten Kampagne nicht herumgetragen, sondern stand fest an einem Ort, so ist die so ermittelte Dosis zunächst einmal keine Personen-, sondern eine *Ortsdosis*. Gleichwohl kann man diesen Wert zur Abschätzung einer Personendosis heranziehen, wenn sich die Person, für die die Dosis bestimmt werden soll, im gleichen Raum befand und so die gleiche Exposition erfahren hat, wie das Messgerät. Für die Auswertung müssen also die Aufenthaltszeiten mit den Messdaten kombiniert werden.

Radon Vision 7 unterstützt diese indirekte Berechnung der Personendosis durch die Möglichkeit, Zeiträume aus einem Kalender in Form von iCalendar-Dateien zu importieren. Dies wird im folgenden Abschnitt näher erläutert.

Weitere Informationen zu den theoretischen Grundlagen der Dosisberechung finden Sie in unserer Application Note AN-010 [1].

5.5.4. Filtern mit iCalendar-Dateien

iCalendar ist ein standardisiertes Datenformat zum Austausch von Kalenderinhalten. Die entsprechenden Dateien haben typischerweise die Dateiendungen .ics oder .iCal und werden als Exportformat von praktisch allen Kalender-Apps unterstützt.

Radon Vision 7 kann solche Dateien importieren. Dabei werden die Kalendertermine mit ihren Start- und Endzeiten für die Bildung der Integrationsintervalle verwendet, die in *Radon Vision 7* zur Dosisberechung benutzt werden.

Um die Personendosis für eine Person zu berechnen, die sich zu bekannten Zeiten in einem mit einem Radon-Messinstrument ausgestatteten Raum aufgehalten hat, gehen Sie wie folgt vor:

- 1. Erstellen Sie einen neuen Kalender mit beliebigem Namen in einer Kalender-App Ihrer Wahl.
- 2. Tragen Sie die Aufenthaltszeiten als Termine ein. Sie müssen sich nicht die Mühe machen, Bezeichnungen für die Termine zu vergeben. *Radon Vision 7* behandelt alle Termine des Kalenders gleich. Sie müssen auch nicht jeden Termin einzeln eintragen. Die Kalender-Apps erlauben die bequeme Erzeugung sich wiederholender Termine und das Festlegen von Ausnahmen. So können leicht regelmäßige Arbeitszeiten an Wochentagen und Ausnahmen etwa für Urlaubszeiten festgelegt werden.
- 3. Exportieren Sie Ihren Kalender als iCalendar-Datei.
- 4. Laden Sie die Messdaten vom Messinstrument herunter bzw. öffnen Sie die entsprechende Messwertdatei.
- 5. Öffnen Sie die iCalendar-Datei im *Berechnung*-Tab unter *Filter* (26 in Abbildung 5.2). In der Ergebnistabelle werden die Integrationsintervalle mit den Einzelepositionen und -dosen sowie, in der letzten Zeile, die Gesamtdosis angezeigt.

Wenn Sie die Auswahl weiter einschränken wollen, weil Sie z. B. wochen- oder monatsweise Berichte erstellen müssen, können Sie dies mit dem *Auswertefenster* (25 in Abbildung 5.2, 9 in Abbildung 5.1) erreichen.

5.6. Berichte

Als professionelles Werkzeug für Radonschutz-Verantwortliche und Dienstleister bietet *Radon Vision 7* eine flexibel einsetzbare Funktion zur Erzeugung von Berichten (34 bis 36 in Abbildung 5.2).

Mit einem Klick auf die *Bericht/Export*-Schaltfläche erzeugen Sie einen Bericht im Excel-, LibreOffice-, CSV- oder HTML-Format, wie er in Abbildung 5.18 gezeigt ist.

Das Aussehen des Berichtes wird dabei wesentlich von der Vorlage (36 in Abbildung 5.2) bestimmt, die Sie selbst entsprechend Ihren Bedürfnissen anpassen können. In der Vorlagedatei – die mitgelieferten Vorlagen finden Sie im Unterverzeichnis Templates des Programmverzeichnisses – sind die Platzhalter für die aus dem Programm zu übernehmenden Werte mit einem vorangestellten \$-Zeichen markiert.

Abbildung 5.18.: Bericht aus Standardvorlage

Tabelle 5.4 listet alle in Berichtsvorlagen verwendbaren Variablen mit ihrer Bedeutung auf.

Variable	Bedeutung	
\$TITLE	Titel bzw. Überschrift des Berichtes	
\$PERSON	exponierte Person oder Personengruppe	
\$START	Anfangsdatum und -zeit des Auswertefensters	
\$END	Enddatum und -zeit des Auswertefensters	
\$PLACE	Messort	
\$INSTRUMENT	Typ und Seriennummer des Messinstruments	
\$COMMENT	freier Kommentar	
\$FILENAME	Dateiname der binären Messwertdatei	
\$F222	Gleichgewichtsfaktor für ^{222}Rn	
\$D222	Dosiskonversionskoeffizient für ^{222}Rn	
\$D220	Dosiskonversionskoeffizient für ^{220}Rn (Thoron)	
\$CHART	Diagrammbild	
\$PIC	Verantwortlicher für die Durchführung der Messung (person in charge)	
\$ROW_START	Anfangsdatum und -zeit des Integrationsintervalls	
\$ROW_END	Enddatum und -zeit des Integrationsintervalls	
\$ROW_TIME	Dauer der Exposition im Integrationsintervall	
\$ROW_NO	Anzahl der Messwerte im Integrationsintervall	
\$ROW_222MIN	Minimalwert der ²²² Rn-Aktivitätskonzentration im Integrationsintervall	
\$ROW_222MAX	Maximalwert der ^{222}Rn -Aktivitätskonzentration im Integrationsintervall	
\$ROW_222AVG	Mittelwert der ^{222}Rn -Aktivitätskonzentration im Integrationsintervall	
\$ROW_222AVG_ERROR	Fehler des ^{222}Rn -Mittelwertes	
\$ROW_222EXP	Exposition durch ^{222}Rn im Integrationsintervall	
\$ROW_222DOSE	Dosis durch ^{222}Rn im Integrations intervall	
\$ROW_222FAST_MIN	Minimalwert der ²²² Rn-Aktivitätskonzentration im Integrationsintervall, be-	
	rechnet aus den Zerfallsprodukten mit kurzer Halbwertszeit	
\$ROW_222FAST_MAX	Maximalwert der ²²² Rn-Aktivitätskonzentration im Integrationsintervall, be-	
	rechnet aus den Zerfallsprodukten mit kurzer Halbwertszeit	
\$ROW_222FAST_AVG	Mittelwert der ²²² Rn-Aktivitätskonzentration im Integrationsintervall, berech-	
	net aus den Zerfallsprodukten mit kurzer Halbwertszeit	
\$ROW_222FAST_AVG_ERROR	Fehler des aus Zerfallsprodukten mit kurzer Halbwertszeit berechneten ²²² Rn-	
	Mittelwertes	
\$ROW_222FAST_EXP	Exposition durch ^{222}Rn im Integrations intervall, be rechnet aus den Zerfalls-	
	produkten mit kurzer Halbwertszeit	
\$ROW_222FAST_DOSE	Dosis durch ^{222}Rn im Integrations intervall, berechnet aus den Zerfallsproduk-	
	ten mit kurzer Halbwertszeit	
\$ROW_220MIN	Minimalwert der ^{220}Rn -Aktivitätskonzentration im Integrationsintervall	
\$ROW_220MAX	Maximalwert der ^{220}Rn -Aktivitätskonzentration im Integrationsintervall	
\$ROW_220AVG	Mittelwert der ^{220}Rn -Aktivitätskonzentration im Integrationsintervall	
\$ROW_220EXP	Exposition durch ^{220}Rn im Integrationsintervall	
\$ROW_220DOSE	Dosis durch ^{220}Rn im Integrationsintervall	
\$ROW_222PAEC_MIN	Minimalwert der Potential Alpha Energy Concentration (PAEC) durch ^{222}Rn -	
	Zerfallsprodukte im Integrationsintervall	
\$ROW_222PAEC_MAX	Maximalwert der Potential Alpha Energy Concentration (PAEC) durch $^{222}Rn\text{-}$	
	Zerfallsprodukte im Integrationsintervall	
\$ROW_222PAEC	Mittelwert der Potential Alpha Energy Concentration (PAEC) durch $^{222}Rn\text{-}$	
	Zerfallsprodukte im Integrationsintervall	

Tabelle 5.4.: In Berichtsvorlagen verwendbare Variablen mit ihrer Bedeutung

Fortsetzung nächste Seite

Fortsetzung von vorheriger Seite

Variable	Bedeutung	
\$ROW_222PAEE	Exposition durch ^{222}Rn -Zerfallsprodukte (Potential Alpha Energy Exposure) im Integrationsintervall	
\$ROW_220PAEC_MIN	Mittelwert der Potential Alpha Energy Concentration (PAEC) durch ²²⁰ Rn- Zerfallsprodukte im Integrationsintervall	
\$ROW_220PAEC_MAX	Mittelwert der Potential Alpha Energy Concentration (PAEC) durch ²²⁰ <i>Rn</i> - Zerfallsprodukte im Integrationsintervall	
\$ROW_220PAEC	Mittelwert der Potential Alpha Energy Concentration (PAEC) durch ²²⁰ <i>Rn</i> -Zerfallsprodukte im Integrationsintervall	
\$ROW_220PAEE	Exposition durch ^{220}Rn -Zerfallsprodukte (Potential Alpha Energy Exposure) im Integrationsintervall	
\$ROW TOTAL EXP	Gesamtexposition durch ^{222}Rn und ^{220}Rn im Integrationsintervall	
\$BOW TOTAL DOSE	Gesamtdosis durch ^{222}Rn und ^{220}Rn im Integrationsintervall	
	Gesamt-Expositionsdauer	
TOTAL NO	Coordinate and Macananta	
\$TUTAL_NU	Gesamizani der Messwerte	
\$TUTAL_222MIN	Minimalwert der <i>Constantiation alle Integrationsinterval-</i> le	
\$TOTAL_222MAX	Maximalwert der ^{222}Rn -Aktivitätskonzentration über alle Integrations intervalle	
\$TOTAL 222AVG	Mittelwert der ^{222}Rn -Aktivitätskonzentration über alle Integrationsintervalle	
STOTAL 222AVG ERROR	Fehler des ^{222}Bn -Mittelwertes über alle Integrationsintervalle	
\$TOTAL 222EXP	Gesamtexposition durch ^{222}Bn	
\$TOTAL 222DOSE	Gesamtdosis durch ^{222}Bn	
TOTAL 222FOR MIN	Minimalwert der $^{222}Bn_{-}$ Aktivitätekonzentration über alle Integrationsinterval-	
WIGIRE_222FASI_HIN	le, berechnet aus den Zerfallsprodukten mit kurzer Halbwertszeit	
\$TOTAL_222FAST_MAX	Maximalwert der ^{222}Rn -Aktivitätskonzentration über alle Integrationsinter- valle, berechnet aus den Zerfallsprodukten mit kurzer Halbwertszeit	
\$TOTAL_222FAST_AVG	Mittelwert der ^{222}Rn -Aktivitätskonzentration über alle Integrationsintervalle, berechnet aus den Zerfallsprodukten mit kurzer Halbwertszeit	
\$TOTAL_222FAST_AVG_ERROR	Fehler des aus Zerfallsprodukten mit kurzer Halbwertszeit berechneten ^{222}Rn -Mittelwertes über alle Integrationsintervalle	
<pre>\$TOTAL_222FAST_EXP</pre>	Gesamt exposition durch $^{222}Rn,$ be rechnet aus den Zerfallsprodukten mit kurzer Halbwertszeit	
<pre>\$TOTAL_222FAST_DOSE</pre>	Gesamtdosis durch $^{222}Rn,$ be rechnet aus den Zerfallsprodukten mit kurzer Halbwertszeit	
\$TOTAL_220MIN	Minimalwert der $^{220}Rn\text{-}\mathrm{Aktivit}$ ätskonzentration über alle Integrations intervalle	
\$TOTAL_220MAX	Maximalwert der $^{220}\mathit{Rn}\text{-}Aktivit$ ätskonzentration über alle Integrations intervalle	
\$TOTAL 220AVG	Mittelwert der ²²⁰ Rn-Aktivitätskonzentration über alle Integrationsintervalle	
STOTAL 220AVG ERROR	Fehler des ^{220}Rn -Mittelwertes über alle Integrationsintervalle	
STOTAL 220EXP	Gesamtexposition durch ^{220}Bn	
\$TOTAL 220DOSE	Gesamtdosis durch ^{220}Bn	
TOTAL 222PAFC MIN	Minimalwert der PAFC durch ^{222}Bn -Zerfallsprodukte über alle Integrationsin-	
WIGINE_2221 ADO_IIIN	tervalle	
<pre>\$TOTAL_222PAEC_MAX</pre>	Maximalwert der PAEC durch ^{222}Rn -Zerfallsprodukte über alle Integrations-intervalle	
<pre>\$TOTAL_222PAEC</pre>	Mittelwert der PAEC durch ^{222}Rn -Zerfallsprodukte über alle Integrationsintervalle	
\$TOTAL_222PAEC_ERROR	Fehler des PAEC-Mittelwertes von ^{222}Rn über alle Integrationsintervalle	

Fortsetzung nächste Seite

Fortsetzung von vorheriger Seite

Variable	Bedeutung
\$TOTAL_222PAEE	Exposition durch ^{222}Rn -Zerfallsprodukte (Potential Alpha Energy Exposure) über alle Integrationsintervalle
<pre>\$TOTAL_220PAEC_MIN</pre>	Minimalwert der PAEC durch ^{220}Rn -Zerfallsprodukte über alle Integrationsintervalle
<pre>\$TOTAL_220PAEC_MAX</pre>	Maximalwert der PAEC durch $^{220}Rn\text{-}{\rm Zerfallsprodukte}$ über alle Integrations-intervalle
\$TOTAL_220PAEC	Mittelwert der PAEC durch $^{220}Rn\text{-}{\rm Zerfallsprodukte}$ über alle Integrations intervalle
\$TOTAL_220PAEC_ERROR	Fehler des PAEC-Mittelwertes von ^{220}Rn über alle Integrations intervalle
\$TOTAL_220PAEE	Exposition durch ^{220}Rn -Zerfallsprodukte (Potential Alpha Energy Exposure) über alle Integrationsintervalle
\$TOTAL_EXP	Gesamtexposition
<pre>\$TOTAL_DOSE</pre>	Gesamtdosis

Alle anderen Inhalte der Vorlagedatei können Sie nach Belieben austauschen, übersetzen, verschieben oder ganz weglassen.

Hinweis

Radon Vision 7 sucht beim Erzeugen des Berichtes in der Vorlage nach Feldern mit den oben aufgelisteten Variablen und tauscht diese **Felder** mit dem Wert der entsprechenden Variablen aus. Formeln in der Vorlage, in denen Variablen vorkommen, funktionieren deshalb **nicht**.

Die Vorlagedatei tmp-report_advanced_example demonstriert aber einen Trick, wie Sie mit Hilfe unsichtbar gemachter Felder trotzdem mit diesen Variablen weiterrechnen können.

Neben dem Bericht werden auch alle Rohdaten als zusätzliche Tabellen in die Tabellenkalkulationsdatei exportiert.

A. Liste der Tastenkombinationen

Tastenkombination	Funktion
Ctrl + O	Datei Datei öffnen
Ctrl + A	Datei Speichern als
Ctrl + Q	Datei Beenden
Ctrl + S	Gerät Suchen
Ctrl + E	Gerät Einstellung
Ctrl + G	Gerät Daten holen
Ctrl + P	Ansicht Spektrum
Ctrl + T	Ansicht Haupt-Werkzeugleiste

B. Bekannte Einschränkungen und Fehler

- 1. Die aus *Radon Vision 6* bekannten Optionen zur Datenfernübertragung sind in *Radon Vision 7* bis auf die Modem-Wählverbindung noch nicht implementiert. Für ZigBee- und Netzwerk-Verbindungen über SARADs *IP Box* muss deshalb weiter auf *Radon Vision 6* zurückgegriffen werden.
- 2. Mit US-Einheiten werden keine Expositionen und Dosen berechnet und der ganze *Berechnung*-Tab wird nicht angezeigt.
- 3. Unter Windows 10 flackert die App von Zeit zu Zeit. Das ist ein reines Darstellungsproblem im Zusammenhang mit der Aktualisierung anderer visueller Komponenten in Windows. Die Stabilität der App ist dadurch nicht eingeschränkt. Der Effekt tritt insbesondere auf, wenn auf dem Desktop-Hintergrund eine Diashow mit wechselnden Hintergrundbildern eingeschaltet ist.
- 4. Beim Markieren einer Kampagne von *DOSEman PRO* mit ừ + Doppelklick wurden bei manchen PCs Zugriffsverletzungen beobachtet, die nach dem Aus- und Wiedereinschalten einer der dargestellten Kurven nicht mehr auftreten.
- 5. Bei der Berechnung der Thoron-Mittelwerte aus *DOSEman PRO*-Daten werden die Fehler der Thoron-Mittelwerte nicht berechnet. Die, normalerweise das Unterschreiten der Nachweisgrenzen anzeigenden, Kleiner-Zeichen sind hier zu ignorieren.
- 6. Wenn die Windows-Einstellung des Dezimaltrenners nicht mit der Spracheinstellung von *Radon Vision 7* zusammen passt, kann es Probleme bei der Darstellung von Gleichgewichtsfaktor und Dosis-Konversionskoeffizient geben, die in der Folge auch zu falschen Berechnung der Dosen führen können.

Literatur

- [1] Ermittlung und Berechnung der Dosis aus der spezifischen Aktivität der Radon- und Radonfolgeprodukte. URL: https://www.sarad.de/cms/media/docs/applikation/an-010_dose_calulation-de.pdf.
- [2] Thoron Messungen mit dem RTM1688-2. URL: https://www.sarad.de/cms/media/ docs/applikation/AN-004_Thoronmessung_DE_11-03-08.pdf.

Glossar

PAEC Potential Alpha Energy Concentration.

PAEE Potential Alpha Energy Exposure.